
Algorithmic Improvements for
Dense Symmetric Tridiagonalization

Grey Ballard

EPASA 2015
International Workshop on Eigenvalue Problems:

Algorithms, Software, and Applications

September 14, 2015

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

(SAND2015-8055 C)

Summary

We want to solve the dense symmetric eigenvalue problem
most/all of the eigenvalues and (possibly) eigenvectors

We’re targeting large distributed-memory parallel machines
seeking scalable, communication-efficient algorithms

Overall approach is two-phase tridiagonalization

We propose two algorithmic improvements
Householder vector reconstruction
Communication-avoiding successive band reduction

Grey Ballard 1

Collaborators

Based on joint work with

James Demmel UC Berkeley
Laura Grigori INRIA
Nick Knight NYU
Mathias Jacquelin LBNL
Hong Diep Nguyen UC Berkeley
Edgar Solomonik ETH Zurich

Grey Ballard 2

Outline

1 Two-Phase Tridiagonalization: Successive Band Reduction

2 Full-to-Band Reduction

3 Band-to-Tridiagonal Reduction

4 Open Problem

Tridiagonalization

We can solve the dense symmetric eigenvalue problem with 3 steps:

1

3
2

1 Reduction-to-tridiagonal via orthogonal similarity transformations
2 Solve the symmetric tridiagonal eigenvalue problem
3 Back-transformation of eigenvectors (if desired)

Grey Ballard 3

Two-Phase Tridiagonalization (SBR)

Tridiagonalization can be done over two (or more) phases in procedure
known as Successive Band Reduction (SBR) [BLS00]:

1a 1b

1a Full-to-band via orthogonal similarity transformations
1b Band-to-tridiagonal using bulge-chasing transformations

Grey Ballard 4

Two-Phase Tridiagonalization (SBR)

Tridiagonalization can be done over two (or more) phases in procedure
known as Successive Band Reduction (SBR) [BLS00]:

1a

3b

1b

3a

1a Full-to-band via orthogonal similarity transformations
1b Band-to-tridiagonal using bulge-chasing transformations

Two-phase back-transformation required for eigenvectors

Grey Ballard 4

Two-Phase Performance Benefits

Two-phase tridiagonalization avoids communication bottlenecks of
direct approach

Sequential performance example

Direct approach suffers poor
cache performance

Two-phase approach already
available in MKL

0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

0  1000  2000  3000  4000  5000  6000  7000  8000 
M
FL
O
PS
 

n 

MatMul  Direct 

Grey Ballard 5

Two-Phase Performance Benefits

Two-phase tridiagonalization avoids communication bottlenecks of
direct approach

Sequential performance example

Direct approach suffers poor
cache performance

Two-phase approach already
available in MKL 0 

1000 

2000 

3000 

4000 

5000 

6000 

7000 

8000 

9000 

0  1000  2000  3000  4000  5000  6000  7000  8000 
M
FL
O
PS
 

n 

MatMul  Direct  Two‐step 

Grey Ballard 5

Model of Distributed-Memory Parallel Computation

Memory

Cache

Memory

Cache

Memory

Cache

Memory

Cache

To analyze algorithms, we are interested in the following quantities
flops floating point operations

memory bandwidth cost words moved between memory and cache

interprocessor bandwidth cost words communicated between processors

latency cost messages communicated between processors

Grey Ballard 6

Related Work

Two-phase tridiagonalization is proven to be effective in practice,
achieving better performance than direct tridiagonalization

despite requiring more flops for eigenvectors

Sequential
Successive Band Reduction [BLS00], Intel MKL

Multicore
PLASMA [LLD11], CA-SBR [BDK12]

GPU
MAGMA [HSG+13], Eigen-G [IYM14]

Distributed-memory parallel
ELPA [MBJ+14], Eigen-Exa [IYM11]

Grey Ballard 7

Outline

1 Two-Phase Tridiagonalization: Successive Band Reduction

2 Full-to-Band Reduction

3 Band-to-Tridiagonal Reduction

4 Open Problem

(One-Phase) Householder Tridiagonalization

For i = 1 to n − 2
1 compute Householder vector yi to annihilate column i
2 apply two-sided symmetric update

Ã = (I − τiyiyT
i) · A · (I − τiyiyT

i)

cast as symmetric rank-2 update

Ã = A− yivT
i − viyT

i

End

Grey Ballard 8

Blocked Direct Tridiagonalization Algorithm

Direct tridiagonalization performed with blocked algorithm:
panel factorization + (two-sided symmetric) trailing matrix update

↑
update

↑
access

↑
access

↑
update

↑
update

↑
access

Panel factorization requires BLAS 2 (matrix-vector) operations
total of O(n3) operations

Trailing matrix update uses BLAS 3 (matrix-matrix) operations
total of O(n3) operations

Grey Ballard 9

Blocked Full-to-Band Algorithm

Full-to-band also performed with blocked algorithm:
panel factorization + (two-sided symmetric) trailing matrix update

↑
update

↑
no access

↑
access

↑
update

↑
update

Panel factorization is tall-skinny QR factorization
total of O(n2b) operations

Trailing matrix update uses BLAS 3 (matrix-matrix) operations
total of O(n3) operations

Grey Ballard 9

Blocked Full-to-Band Algorithm

For i = 1 to n
b − 2

1 QR factorization to generate Yi and annihilate block column i
2 apply two-sided symmetric update

Ã = (I − YiTiY T
i) · A · (I − YiT T

i Y T
i)

cast as symmetric rank-2b update

Ã = A− YiV T
i − ViY T

i

End

Grey Ballard 10

Direct Tridiagonalization vs Full-to-Band

Full-to-band communicates less than direct tridiagonalization,
reducing interprocessor latency and local memory bandwidth costs

However,
tall-skinny QR can still be a latency bottleneck

Householder QR requires a synchronization for every column

(and we still have to reduce the band matrix to tridiagonal form)

Grey Ballard 11

Tall-Skinny QR (TSQR) Algorithm [DGHL12]

Grey Ballard 12

Key benefit of TSQR:
one parallel reduction

Householder QR:
one reduction per column

Orthogonal factor stored implicitly
as tree of Householder vectors

Communication-Avoiding QR (CAQR)

CAQR is designed for general matrices, using TSQR for panel
factorization and applying the one-sided update using implicit structure

Performing a symmetric two-sided update is much more complicated

Grey Ballard 13

Communication-Avoiding QR (CAQR)

CAQR is designed for general matrices, using TSQR for panel
factorization and applying the one-sided update using implicit structure

Performing a symmetric two-sided update is much more complicated
Grey Ballard 13

TSQR within Full-to-Band

TSQR is best algorithm for panel factorization, but
Two-sided symmetric trailing matrix update is easier with
Householder vectors

Can we get the best of both worlds:
can we perform TSQR but then recover Householder vectors?

Grey Ballard 14

Key Idea

Compute a QR decomposition
using Householder vectors*:

A = QR = (I − YTY T
1)R

A Q R I Y T Y R
T

1

Re-arrange the equation and we
have an LU decomposition:

A− R = Y · (−TY T
1 R)

A R Y T Y R
T

1

Grey Ballard 15

*I − YTY T
1 known as compact WY representation

Key Idea

Compute a QR decomposition
using Householder vectors*:

A = QR = (I − YTY T
1)R

A Q R I Y T Y R
T

1

Re-arrange the equation and we
have an LU decomposition:

A− R = Y · (−TY T
1 R)

A R Y T Y R
T

1

Grey Ballard 15

*I − YTY T
1 known as compact WY representation

Yamamoto’s Idea for QR Decomposition

Y. Yamamoto gave a talk at SIAM ALA 2012: he wanted to use TSQR
but offload the one-sided trailing matrix update to a GPU

To make CAQR’s trailing matrix update more like matrix multiplication,
his idea was to convert implicit tree into compact WY-like representation

W S

Grey Ballard 16

Yamamoto’s Idea for QR Decomposition

Y. Yamamoto gave a talk at SIAM ALA 2012: he wanted to use TSQR
but offload the one-sided trailing matrix update to a GPU

To make CAQR’s trailing matrix update more like matrix multiplication,
his idea was to convert implicit tree into compact WY-like representation

W S

Compact WY representation: I − YTY T

I Y T Y
T

Basis-kernel representation: I −WSW T

I W S W
T

Grey Ballard 16

Yamamoto’s Algorithm

1 Perform TSQR
2 Form Q explicitly (tall-skinny orthonormal factor)
3 Set W = Q − I
4 Set S = (I −Q1)−1

I −WSW T = I −
[
Q1 − I

Q2

] [
I −Q1

]−1 [
(Q1 − I)T QT

2

]
I W S W

T

Grey Ballard 17

Yamamoto’s Algorithm

1 Perform TSQR
2 Form Q explicitly (tall-skinny orthonormal factor)
3 Set W = Q − I
4 Set S = (I −Q1)−1

I −WSW T = I −
[
Q1 − I

Q2

] [
I −Q1

]−1 [
(Q1 − I)T QT

2

]
I W W

T

U L
-1-1

Grey Ballard 17

How is Q formed?

Q1 Identity

Grey Ballard 18

Apply Q to the identity,
exploiting sparsity

Computation and communication
identical to TSQR, performed in
reverse order

Yamamoto’s Algorithm

1 Perform TSQR
2 Form Q explicitly (tall-skinny orthonormal factor)
3 Set W = Q − I
4 Set S = (I −Q1)−1

I −WSW T = I −
[
Q1 − I

Q2

] [
I −Q1

]−1 [
(Q1 − I)T QT

2

]
I W W

T

U L
-1-1

Grey Ballard 19

Reconstructing Householder Vectors (TSQR-HR)

With a little more effort, we can obtain the compact WY representation:
1 Perform TSQR
2 Form Q explicitly (tall-skinny orthonormal factor)
3 Perform LU decomposition: Q − I = LU
4 Set Y = L
5 Set T = −UY−T

1

I − YTY T = I −
[
Y1
Y2

] [
T
] [

Y T
1 Y T

2

]
I Y T Y

T

Grey Ballard 20

Why form Q?

Cheaper approach based on A− R = Y · (−TY T
1 R):

1 Perform TSQR
2 Perform LU decomposition: A− R = LU
3 Set Y = L
4 Set T = −UR−1Y−T

1 (or compute T from Y)

This approach is similar to computing R using TSQR
and Q using Householder QR

if A is well-conditioned, works fine
if A is ill-conditioned, R matrix is sensitive to roundoff
more on less-stable approaches later...

Grey Ballard 21

Why form Q?

Cheaper approach based on A− R = Y · (−TY T
1 R):

1 Perform TSQR
2 Perform LU decomposition: A− R = LU
3 Set Y = L
4 Set T = −UR−1Y−T

1 (or compute T from Y)

This approach is similar to computing R using TSQR
and Q using Householder QR

if A is well-conditioned, works fine
if A is ill-conditioned, R matrix is sensitive to roundoff
more on less-stable approaches later...

Grey Ballard 21

What about pivoting in LU?

Third step in reconstructing Householder vectors:
Perform LU decomposition: Q − I = LU

what if Q − I is singular?

Actually, we need to make a sign choice:
Perform LU decomposition: Q − Sgn = LU

Sgn matrix corresponds to sign choice in Householder QR
guarantees Q − Sgn is nonsingular
guarantees maximum element on the diagonal (no pivoting)

No pivoting makes LU of tall-skinny matrix very easy
LU of top block followed by triangular solve for all other rows

Grey Ballard 22

What about pivoting in LU?

Third step in reconstructing Householder vectors:
Perform LU decomposition: Q − I = LU

what if Q − I is singular?

Actually, we need to make a sign choice:
Perform LU decomposition: Q − Sgn = LU

Sgn matrix corresponds to sign choice in Householder QR
guarantees Q − Sgn is nonsingular
guarantees maximum element on the diagonal (no pivoting)

No pivoting makes LU of tall-skinny matrix very easy
LU of top block followed by triangular solve for all other rows

Grey Ballard 22

What about pivoting in LU?

Third step in reconstructing Householder vectors:
Perform LU decomposition: Q − I = LU

what if Q − I is singular?

Actually, we need to make a sign choice:
Perform LU decomposition: Q − Sgn = LU

Sgn matrix corresponds to sign choice in Householder QR
guarantees Q − Sgn is nonsingular
guarantees maximum element on the diagonal (no pivoting)

No pivoting makes LU of tall-skinny matrix very easy
LU of top block followed by triangular solve for all other rows

Grey Ballard 22

Reconstructing Householder Vectors (TSQR-HR)

1 Perform TSQR
2 Form Q explicitly (tall-skinny orthonormal factor)
3 Perform LU decomposition: Q − Sgn = LU
4 Set Y = L
5 Set T = −U · Sgn · Y−T

1

I − YTY T = I −
[
Y1
Y2

] [
T
] [

Y T
1 Y T

2

]
I Y T Y

T

Grey Ballard 23

Numerical Stability

Theorem
Let R̂ be the computed upper triangular factor of m × b matrix A
obtained via the TSQR algorithm with p processors using a binary tree
(assuming m/p ≥ b), and let Q̃ = I − Ỹ T̃ Ỹ T

1 and R̃ = Sgn · R̂ where
Ỹ , T̃ , and Sgn are the computed factors obtained from Householder
reconstruction. Then

‖A− Q̃R̃‖F ≤ F1(m,b,p, ε)‖A‖F

and
‖I − Q̃T Q̃‖F ≤ F2(m,b,p, ε)

where F1,F2 = O
((

b3/2(m/p) + b5/2 log p + b3) ε) for b(m/p)ε� 1.

*Result based on the stability of TSQR [MYZ12]

Grey Ballard 24

Numerical Experiments for Tall-Skinny Matrices

ρ κ(A) ‖A− Q̃R̃‖F ‖I − Q̃T Q̃‖F
1e-01 5.1e02 2.2e-15 6.8e-15
1e-03 5.2e04 2.3e-15 9.3e-15
1e-05 5.2e06 2.4e-15 9.5e-15
1e-07 5.1e08 2.3e-15 9.1e-15
1e-09 5.2e10 2.3e-15 9.3e-15
1e-11 5.2e12 2.2e-15 8.8e-15
1e-13 5.0e14 2.7e-15 1.2e-14
1e-15 4.7e15 2.3e-15 8.7e-15

Error of TSQR-HR on tall and skinny matrices (m = 1000,b = 200)

Grey Ballard 25

Costs of Householder Reconstruction

Householder Reconstruction
1 Perform TSQR 2mb2 flops, one QR reduction
2 Form Q 2mb2 flops, one QR reduction
3 LU(Q − Sgn) mb2 flops, one broadcast
4 Set Y = L
5 Set T = −U · Sgn · Y−T

1 O(b3) flops

Alternative Stable Algorithms
TSQR 2mb2 flops, one QR reduction
HhQR (and form T) 3mb2 flops, 2b reductions
Yamamoto’s 4mb2 flops, two QR reductions

Grey Ballard 26

Let A be m × b

Costs of Householder Reconstruction

Improved Householder Reconstruction
1 Perform TSQR 2mb2 flops, one QR reduction
2 Form Q1 O(b3) flops
3 Compute LU = Q1 − Sgn O(b3) flops
4 Apply Q to U−1 to get Y 2mb2 flops, one QR reduction
5 Set T = −U · Sgn · Y−T

1 O(b3) flops

Alternative Stable Algorithms
TSQR 2mb2 flops, one QR reduction
HhQR (and form T) 3mb2 flops, 2b reductions
Yamamoto’s 4mb2 flops, two QR reductions

Grey Ballard 26

Let A be m × b

Costs of Householder Reconstruction

Improved Householder Reconstruction
1 Perform TSQR 2mb2 flops, one QR reduction
2 Form Q1 O(b3) flops
3 Compute LU = Q1 − Sgn O(b3) flops
4 Apply Q to U−1 to get Y 2mb2 flops, one QR reduction
5 Set T = −U · Sgn · Y−T

1 O(b3) flops

Alternative Stable Algorithms
TSQR 2mb2 flops, one QR reduction
HhQR (and form T) 3mb2 flops, 2b reductions
Yamamoto’s 4mb2 flops, two QR reductions

Grey Ballard 26

Let A be m × b

Performance of Stable Tall-Skinny QR Algorithms

Number of processes
144 576 2304 9216

E
ff
e

c
ti
v
e
 f

lo
p

 r
a

te
 p

e
r

p
ro

c
e
s
s
o

r

×10
8

2

4

6

8

10

12

14

16

18

Weak Scaling, Hopper (MKL)
512*p-by-32 problem

TSQR
TSQR-HR
TSQR-HR-simple
Yamamoto
Householder-QR

Number of processes
144 576 2304 9216

E
ff
e

c
ti
v
e
 f

lo
p

 r
a

te
 p

e
r

p
ro

c
e
s
s
o

r

×10
8

2

4

6

8

10

12

14

16

18

Weak Scaling, Edison (MKL)
512*p-by-32 problem

Grey Ballard 27

Some Cheaper and Less-Stable Alternatives

Alternative Less-Stable Algorithms

TSQR-AR
Use TSQR to get R
Perform LU(A− R) to get Y

CholQR-HR
R = Chol(AT A)
Perform LU(A− R) to get Y

...or run these with a step of iterative refinement

Grey Ballard 28

Numerical Stability of Less-Stable Alternatives

TSQR-AR
with it. refinement

CholQR-HR
with it. refinement

ρ κ ‖A− Q̃R̃‖F ‖I − Q̃T Q̃‖F ‖A− Q̃R̃‖F ‖I − Q̃T Q̃‖F

1e-01 5.1e02 1.1e-15 2.6e-15 1.1e-15 2.6e-15
1e-03 5.2e04 1.0e-15 2.7e-15 1.0e-15 2.8e-15
1e-05 5.2e06 1.1e-15 2.6e-15 1.1e-15 3.0e-15
1e-07 5.1e08 1.1e-15 2.8e-15 1.0e-15 2.6e-15
1e-09 5.2e10 1.1e-15 2.8e-15 1.0e-15 2.8e-15
1e-11 5.2e12 1.1e-15 2.7e-15 1.0e-15 2.8e-15
1e-13 5.0e14 1.1e-15 2.7e-15 +∞ +∞
1e-15 4.7e15 1.1e-15 4.6e-15 +∞ +∞

Errors on tall and skinny matrices (m = 1000,b = 200)

Grey Ballard 29

Performance of Less-Stable Tall-Skinny QR Algorithms

Number of processes
144 576 2304 9216

E
ff

e
c
ti
v
e

 f
lo

p
 r

a
te

 p
e

r
p

ro
c
e

s
s
o

r

×10
9

0.5

1

1.5

2

2.5

3

3.5

4

Weak Scaling, Hopper (MKL)
512*p-by-32 problem

TSQR
CholQR-HR
CholQR2-HR
TSQR-AR
TSQR-AR2
TSQR-HR

Number of processes
144 576 2304 9216

E
ff

e
c
ti
v
e

 f
lo

p
 r

a
te

 p
e

r
p

ro
c
e

s
s
o

r

×10
9

0.5

1

1.5

2

2.5

3

3.5

4

Weak Scaling, Edison (MKL)
512*p-by-32 problem

Grey Ballard 30

Leading Order Costs for Full-to-Band

Panel Factorization Flops Words Messages

Householder QR O
(

n2
√

p

)
O (n log p)

TSQR 4
3

n3

p O
(

n2
√

p log p
)

O
(√

p log3 p
)

TSQR-HR O
(

n2
√

p

)
O
(√

p log2 p
)

Costs of full-to-band reduction of n × n matrix
to band matrix with bandwidth b � n

distributed over p processors in 2D fashion.

Grey Ballard 31

Outline

1 Two-Phase Tridiagonalization: Successive Band Reduction

2 Full-to-Band Reduction

3 Band-to-Tridiagonal Reduction

4 Open Problem

Band-to-Tridiagonal Reduction

Maintaining band structure during orthogonal similarity
transformations is trickier

Annihilating entries within band causes fill-in outside the band
Bulge-chasing process is required to maintain band structure

Ideas go back a long way:
Rutishauser [Rut63]
Schwarz [Sch63]
Murata and Horikoshi [MH75]
Kaufman [Kau84]
Bischof, Lang, and Sun [BLS00]

Grey Ballard 32

Band-to-Tridiagonal Bulge Chasing

5

Q1

4

3

2

1
6

Q1
T

b+
1

d+
1

c
c+

d

c d

Q2

Q2
T

Q3

Q3
T

Q4

Q4
T

Q5

Q5
T

Grey Ballard 33

constraint:
c + d ≤ b

b = bandwidth
c = columns
d = diagonals

1-Sweep Band-to-Tridiagonal [MH75]

1

2

3

4

5

Grey Ballard 34

Murata/Horikoshi’s algorithm:
all diagonals annihilated

after one sweep

c = 1 column
d = b − 1 diagonals

How do we get data re-use?

1 Increase number of columns in parallelogram (c)
permits blocking Householder updates: O(c) re-use
constraint c + d ≤ b =⇒ trade-off between re-use and progress
requires multiple “sweeps”

2 Chase multiple bulges at a time (ω)
apply several updates to band while it’s in local memory: O(ω) re-use
bulges cannot overlap, need working set to fit in local memory

QR PRE

SYM

POST

b+1

d
+

1

c

5

Q1

4

3

2

1
6

Q1
T

b+
1

d+
1

c

c+
d

c d

Q2

Q2
T

Q3

Q3
T

Q4

Q4
T

Q5

Q5
T

Grey Ballard 35

Communication-Avoiding SBR

We propose an algorithm that balances the two techniques for getting
data re-use (CA-SBR)

Theoretically optimal approach: cut bandwidth in half at every sweep
log b sweeps

Sequential and shared-memory implementation exist [BDK12]
number of sweeps is tuning parameter

Grey Ballard 36

Performance Results in Shared Memory

Speedup of sequential CASBR over Intel’s Math Kernel Library

1.0

1.0

0.9

1.0

1.0

0.9

1.2

1.1

0.9

0.9

0.9

0.9

1.6

1.5

1.4

1.2

1.1

1.1

1.8

1.8

1.7

1.5

1.3

1.2

2.0

1.9

1.8

1.7

1.4

1.2

2.0

2.0

1.9

1.8

1.6

1.2

Bandwidth b

M
at

rix
 d

im
en

si
on

 n

50 100 150 200 250 300

24000

20000

16000

12000

8000

4000

Benchmarked on 10-core Intel Westmere [BDK12]

Grey Ballard 37

Performance Results in Shared Memory

Speedup of parallel CASBR (10 threads) over sequential CASBR

8.8

9.2

8.9

9.0

8.7

8.2

8.1

8.8

9.3

9.8

9.2

6.7

9.4

9.2

9.2

8.9

8.1

5.6

9.2

8.9

8.6

7.9

6.8

4.4

8.5

8.2

8.0

7.4

5.9

3.6

8.4

8.3

7.8

7.4

6.0

3.6

Bandwidth b

M
at

rix
 d

im
en

si
on

 n

50 100 150 200 250 300

24000

20000

16000

12000

8000

4000

Benchmarked on 10-core Intel Westmere [BDK12]

Grey Ballard 37

Distributed-Memory Parallel Distribution

P0

P1

P2

P0

P1

Grey Ballard 38

We use 1D
block or block-cyclic distribution

of columns to processors

Lang’s Algorithm [Lan93, Auc12]

P0

P1

P2

P3

Grey Ballard 39

parallelization of Murata/Horikoshi’s:
eliminate one column at a time,

tridiagonal after one sweep

works like a bandsaw:
columns move left
Householder vectors move right
O(1) messages per column

Communication-Avoiding SBR [BDK15]

P0

P1

P2

P3

P4

Grey Ballard 40

cut bandwidth in half each sweep;
requires multiple sweeps

works like a sandbag relay:
each processor passes bulges along
O(p) messages per sweep

Leading Order Costs for Band-to-Tridiagonal

Algorithm Flops Words Messages

Lang’s [Lan93, Auc12]
O
(

n2b
p

)
O(nb)

O(n)

CA-SBR [BDK15] O(p log b)

Costs of band-to-tridiagonal reduction of
band matrix with bandwidth b � n

distributed over p processors in 1D fashion.

Grey Ballard 41

Back-Transformation for Eigenvectors

If only eigenvalues are desired, CA-SBR gives a theoretical net win,
but . . .

. . . what if we want eigenvectors?

we must accumulate all the orthogonal transformations from the
band-to-tridiagonal reduction
we generate O(n2) data per sweep
naively, we need O(n3) computation per sweep

In order to achieve O(p log b)� O(n) messages,
we need to take O(log b) sweeps instead of 1 sweep

tradeoff between latency cost and flops/bandwidth cost

Grey Ballard 42

Back-Transformation for Eigenvectors

If only eigenvalues are desired, CA-SBR gives a theoretical net win,
but . . .

. . . what if we want eigenvectors?

we must accumulate all the orthogonal transformations from the
band-to-tridiagonal reduction
we generate O(n2) data per sweep
naively, we need O(n3) computation per sweep

In order to achieve O(p log b)� O(n) messages,
we need to take O(log b) sweeps instead of 1 sweep

tradeoff between latency cost and flops/bandwidth cost

Grey Ballard 42

Back-Transformation for Eigenvectors

If only eigenvalues are desired, CA-SBR gives a theoretical net win,
but . . .

. . . what if we want eigenvectors?

we must accumulate all the orthogonal transformations from the
band-to-tridiagonal reduction
we generate O(n2) data per sweep
naively, we need O(n3) computation per sweep

In order to achieve O(p log b)� O(n) messages,
we need to take O(log b) sweeps instead of 1 sweep

tradeoff between latency cost and flops/bandwidth cost

Grey Ballard 42

Outline

1 Two-Phase Tridiagonalization: Successive Band Reduction

2 Full-to-Band Reduction

3 Band-to-Tridiagonal Reduction

4 Open Problem

Open Problem

In two-phase tridiagonalization, we compute the following matrices:

A = Q1BQ1
T = Q1(Q2TQT

2)QT
1 = Q1Q2(V ΛV T)Q2

T QT
1

where A is dense, B is banded, T is tridiagonal, Λ is diagonal

We can compute A, B, T , Λ, V stably and efficiently, we seek Q1Q2V

Can we compute
Q1Q2 from A and T ; or
Q2 from B and T

stably (as stable as direct tridiagonalization) and
efficiently (� O(n) messages)?

Grey Ballard 43

Open Problem

In two-phase tridiagonalization, we compute the following matrices:

A = Q1BQ1
T = Q1(Q2TQT

2)QT
1 = Q1Q2(V ΛV T)Q2

T QT
1

where A is dense, B is banded, T is tridiagonal, Λ is diagonal

We can compute A, B, T , Λ, V stably and efficiently, we seek Q1Q2V

Can we compute
Q1Q2 from A and T ; or
Q2 from B and T

stably (as stable as direct tridiagonalization) and
efficiently (� O(n) messages)?

Grey Ballard 43

Open Problem

Problem: Given A and (similar) T , compute Q such that A = QTQT

In the first part of the talk, we established a connection between
A = QR and A = LU

Is there an analogous connection between
A = QTQT and A = LT̃LT (or A = LDLT)?

T̃ is tridiagonal from Aasen’s factorization

D is block-diagonal from Bunch-Kaufman’s factorization

Grey Ballard 44

Summary

We want to solve the dense symmetric eigenvalue problem
most/all of the eigenvalues and (possibly) eigenvectors

We’re targeting large distributed-memory parallel machines
seeking scalable, communication-efficient algorithms

Overall approach is two-phase tridiagonalization

We propose two algorithmic improvements
Householder vector reconstruction
Communication-avoiding successive band reduction

Grey Ballard 45

Thanks!

For more details:

Reconstructing Householder Vectors from Tall-Skinny QR
Grey Ballard, Jim Demmel, Laura Grigori, Mathias Jacquelin,

Nick Knight, Hong Diep Nguyen and Edgar Solomonik
Journal on Parallel and Distributed Computing 2015

http://dx.doi.org/10.1016/j.jpdc.2015.06.003

Avoiding Communication in Successive Band Reduction
Grey Ballard, Jim Demmel, and Nick Knight

ACM Transactions on Parallel Computing 2015
http://doi.acm.org/10.1145/2686877

Grey Ballard 46

http://dx.doi.org/10.1016/j.jpdc.2015.06.003
http://doi.acm.org/10.1145/2686877

References I

T. Auckenthaler.
Highly Scalable Eigensolvers for Petaflop Applications.
PhD thesis, Fakultät für Informatik, Technische Universität München,
2012.

G. Ballard, J. Demmel, and N. Knight.
Communication avoiding successive band reduction.
In Proceedings of the 17th ACM SIGPLAN symposium on Principles and
Practice of Parallel Programming, PPoPP ’12, pages 35–44, New York,
NY, USA, 2012. ACM.

Grey Ballard, James Demmel, and Nicholas Knight.
Avoiding communication in successive band reduction.
ACM Transactions on Parallel Computing, 1(2):11:1–11:37, February
2015.

Grey Ballard 47

References II

C. Bischof, B. Lang, and X. Sun.
A framework for symmetric band reduction.
ACM Transactions on Mathematical Software, 26(4):581–601, December
2000.

J. Demmel, L. Grigori, M. Hoemmen, and J. Langou.
Communication-optimal parallel and sequential QR and LU
factorizations.
SIAM Journal on Scientific Computing, 34(1):A206–A239, 2012.

Azzam Haidar, Raffaele Solcá , Mark Gates, Stanimire Tomov, Thomas
Schulthess, and Jack Dongarra.
Leading edge hybrid multi-GPU algorithms for generalized
eigenproblems in electronic structure calculations.
In J.M. Kunkel, T. Ludwig, and H. W. Meuer, editors, Supercomputing,
volume 7905 of Lecture Notes in Computer Science, pages 67–80.
Springer Berlin Heidelberg, 2013.

Grey Ballard 48

References III

Toshiyuki Imamura, Susumu Yamada, and Masahiko Machida.
Development of a high performance eigensolver on the petascale next
generation supercomputer system.
In Proceedings of Joint International Conference on Supercomputing in
Nuclear Applications and Monte Carlo 2010 (SNA+ MC2010), 2011.

Toshiyuki Imamura, Susumu Yamada, and Masahiko Machida.
Eigen-G: GPU-based eigenvalue solver for real-symmetric dense
matrices.
In Roman Wyrzykowski, Jack Dongarra, Konrad Karczewski, and Jerzy
Waśniewski, editors, Parallel Processing and Applied Mathematics,
volume 8384 of Lecture Notes in Computer Science, pages 673–682.
Springer Berlin Heidelberg, 2014.

L. Kaufman.
Banded eigenvalue solvers on vector machines.
ACM Transactions on Mathematical Software, 10:73–86, 1984.

Grey Ballard 49

References IV

B. Lang.

A parallel algorithm for reducing symmetric banded matrices to
tridiagonal form.

SIAM Journal on Scientific Computing, 14(6):1320–1338, November
1993.

P. Luszczek, H. Ltaief, and J. Dongarra.

Two-stage tridiagonal reduction for dense symmetric matrices using tile
algorithms on multicore architectures.

In Proceedings of the 2011 IEEE International Parallel & Distributed
Processing Symposium, IPDPS ’11, pages 944–955, Washington, DC,
USA, 2011. IEEE Computer Society.

Grey Ballard 50

References V

A. Marek, V. Blum, R. Johanni, V. Havu, B. Lang, T. Auckenthaler,
A. Heinecke, H.-J. Bungartz, and H. Lederer.
The ELPA library: scalable parallel eigenvalue solutions for electronic
structure theory and computational science.
Journal of Physics: Condensed Matter, 26(21), 2014.

K. Murata and K. Horikoshi.
A new method for the tridiagonalization of the symmetric band matrix.
Information Processing in Japan, 15:108–112, 1975.

Daisuke Mori, Yusaku Yamamoto, and Shao-Liang Zhang.
Backward error analysis of the AllReduce algorithm for Householder QR
decomposition.
Japan Journal of Industrial and Applied Mathematics, 29(1):111–130,
2012.

Grey Ballard 51

References VI

H. Rutishauser.

On Jacobi rotation patterns.

In Proceedings of Symposia in Applied Mathematics, volume 15, pages
219–239. AMS, 1963.

H. Schwarz.

Algorithm 183: reduction of a symmetric bandmatrix to triple diagonal
form.

Communications of the ACM, 6(6):315–316, June 1963.

Grey Ballard 52

Experimental Platforms

Hopper
Compute nodes:
2 12-core AMD MagnyCours
Peak flop rate:

8.4 Gflops/core
Memory bandwidth:

53.9 GB/s
Interconnect:

Gemini 3D-torus

Edison
Compute nodes:

2 12-core Intel Ivy Bridge
Peak flop rate:

19.2 Gflops/core
Memory bandwidth:

103.3 GB/s
Interconnect:

Aries dragonfly

Grey Ballard 53

	Two-Phase Tridiagonalization: Successive Band Reduction
	Full-to-Band Reduction
	Band-to-Tridiagonal Reduction
	Open Problem

